A class of pseudoparticle solutions of the $\mathrm{SO}(5)$ Yang-Mills equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L195
(http://iopscience.iop.org/0305-4470/10/11/005)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:46

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A class of pseudoparticle solutions of the $\mathbf{S O}(5)$ Yang-Mills equations

D H Tchrakian† and J H Rawnsley
Dublin Institute for Advanced Studies, School of Theoretical Physics, Dublin 4, Ireland

Received 9 September 1977

Abstract

Using γ-matrix representations of the $S O(5)$ algebra, a special ansatz for the solutions of the Yang-Mills equations is tested. Non-trivial solutions are found, and their charges are computed.

Recently the pseudoparticle (Belavin et al 1975) solutions of the $\mathrm{SU}(2)$ Yang-Mills field equations attributed to t'Hooft (Jackiw et al 1977) have become well known. In this letter, we give a brief presentation of some pseudoparticle solutions of the $\mathrm{SO}(5)$ Yang-Mills equations. We recover from our results the $\mathrm{SO}(4)$ pseudoparticle solutions in the form obtained by J Madore et al (private communication).

Our starting point follows from a general ansatz made for the $\mathrm{SO}(4)$ Yang-Mills connection (the vector potential) in a previous article by one of us (Tchrakian 1977). The distinguishing feature of that ansatz was that it had the parity-definite form

$$
\begin{equation*}
A_{\mu}=\frac{\mathrm{i}}{4}\left[\gamma_{\mu}, \gamma_{\lambda}\right] x_{\lambda}\left(\frac{1+\gamma_{5}}{2}\right) g_{1}(r)+\frac{\mathrm{i}}{4}\left[\gamma_{\mu}, \gamma_{\lambda}\right] x_{\lambda}\left(\frac{1-\gamma_{5}}{2}\right) g_{2}(r) . \tag{1}
\end{equation*}
$$

The main consequence of (1) was that the self-duality of the resulting curvature $F_{\mu \nu}$, and not its double self-duality, gave rise to the BPST solutions, even though the γ-matrices used in (1) are generators of $\mathrm{SO}(4)$ and not $\mathrm{SU}(2)$. This was a small technical advantage.

We now generalise this ansatz by first, relaxing the restriction to spherical symmetry and second, by including other γ-matrix bases which together with the bases in (1) make up the basic representation for the $\mathrm{SO}(6)$ algebra,

$$
\begin{align*}
& L_{\mu \nu}=\frac{\mathrm{i}}{4}\left[\gamma_{\mu}, \gamma_{\nu}\right], \quad \mu, \nu=1,2,3,4 \\
& L_{5 \mu}=\gamma_{\mu}, \quad L_{6 \mu}=\mathrm{i} \gamma_{5} \gamma_{\mu}, \quad \quad L_{56}=\frac{1}{2} \gamma_{5} \tag{2}\\
& \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu} .
\end{align*}
$$

The ansatz is
$A_{\mu}=\frac{i}{4}\left[\gamma_{\mu}, \gamma_{\lambda}\right]\left(\frac{1+\gamma_{5}}{2}\right) \alpha_{\lambda}+\frac{i}{4}\left[\gamma_{\mu}, \gamma_{\lambda}\right]\left(\frac{1-\gamma_{5}}{2}\right) \beta_{\lambda}+\frac{1}{4 e} \gamma_{\mu} \Lambda+\frac{1}{4 e} \mathrm{i} \gamma_{5} \gamma_{\mu} \Omega$

[^0]where
\[

$$
\begin{align*}
& \alpha_{\mu}=a_{\mu}+b_{\mu}=-\frac{1}{e} \partial \mu \ln \theta \\
& \beta_{\mu}=a_{\mu}-b_{\mu}=+\frac{1}{e} \partial \mu \ln \psi . \tag{4}
\end{align*}
$$
\]

The resulting expression for the curvature then is

$$
\begin{align*}
F_{\mu \nu}=\left(\partial_{\mu} A_{\nu}+\right. & \left.\mathrm{i} e A_{\mu} A_{\nu}\right)-[\mu, \nu] \\
= & {\left[\frac{\mathrm{i}}{4}\left[\gamma_{\nu}, \gamma_{\lambda}\right]\left(\frac{1+\gamma_{5}}{2}\right)\left(\partial_{\mu} \alpha_{\lambda}+e \alpha_{\mu} \alpha_{\lambda}\right)+\frac{\mathrm{i}}{8}\left[\gamma_{\mu}, \gamma_{\nu}\right]\left(\frac{1+\gamma_{5}}{2}\right) e\left(\alpha^{2}+\frac{1}{4} \Lambda^{2}+\frac{1}{4} \Omega^{2}\right)\right.} \\
& +\frac{\mathrm{i}}{4}\left[\gamma_{\nu}, \gamma_{\lambda}\right]\left(\frac{1-\gamma_{5}}{2}\right)\left(\partial_{\mu} \beta_{\lambda}+e \beta_{\mu} \beta_{\lambda}\right)+\frac{\mathrm{i}}{8}\left[\gamma_{\mu}, \gamma_{\nu}\right]\left(\frac{1-\gamma_{5}}{2}\right) e\left(\beta^{2}+\frac{1}{4} \Lambda^{2}+\frac{1}{4} \Omega^{2}\right) \\
& \left.+\frac{1}{2}\left(\Lambda+\mathrm{i} \gamma_{5} \Omega\right)\left(b_{\mu} \gamma_{\nu}+\frac{1}{2} \epsilon_{\mu \nu \lambda} b_{\lambda} \gamma_{\tau}\right)\right]-[\mu, \nu] \tag{5}
\end{align*}
$$

where $[\mu, \nu]$ denotes the previous terms antisymmetrised in μ and ν.
The self-duality condition \dagger then leads to the following equations for θ, ψ, Λ and Ω :

$$
\begin{align*}
& \square \theta+\frac{1}{2}\left(\Lambda^{2}+\Omega^{2}\right) \theta=0 \tag{6}\\
& \delta_{\mu \nu} \square \psi-4 \partial_{\mu} \partial_{\nu} \psi=0 \tag{7}\\
& \partial_{\mu} \Lambda+e\left(a_{\mu}-2 b_{\mu}\right) \Lambda=0 \tag{8}\\
& \partial_{\mu} \Omega+e\left(a_{\mu}-2 b_{\mu}\right) \Omega=0 . \tag{9}
\end{align*}
$$

Before considering the full $\mathrm{SO}(6)$ case, we remark on the content of equations (6) and (7) for the $\mathrm{SO}(4)$ case, with $\Lambda=\Omega=0$. It is then immediately obvious that we recover the t'Hooft (Jackiw et al 1977) and bpst (Belavin et al 1975) solutions from (6) and (7) respectively. We shall remark on this again below when we compute the topological invariants.

It follows from (8) and (9) that Λ and Ω are proportional, and without loss of generality we put $\Lambda=\Omega$. Integrating (8) and (9)

$$
\begin{equation*}
\Lambda=\Omega=\Omega_{0} \theta^{-1 / 2} \psi^{-3 / 2} \tag{10}
\end{equation*}
$$

where ψ is found by integrating (7) to be

$$
\begin{equation*}
\psi=k x^{2}+C_{\mu} x_{\mu}+D \tag{11}
\end{equation*}
$$

where C_{μ} and D are constants. This can, without loss of generality, be re-expressed as

$$
\begin{equation*}
\psi=r^{2}+\lambda^{2} \tag{11'}
\end{equation*}
$$

where $r^{2}=x^{2}$, and the independent integration constants are λ^{2} and Ω_{0}. The function $\theta(x)$ then obeys the Poisson equation

$$
\square \theta=-\Omega_{0}^{2} \psi^{-3}
$$

\dagger The $\mathrm{SO}(4)$ self-dual solutions with $b_{\mu}=0$ result in a flat connection. The double self-dual solutions of SO(4) (Belavin et al 1975) or the self-dual solutions of SU(2) (Jackiw et al 1977) are non-trivial.

The general solution is then given by the special solution $\theta=\Omega_{0}^{2} / 8 \lambda^{2} \psi$ added to any solution of the Laplace equation:

$$
\begin{equation*}
\theta=A^{2}+\frac{\Omega_{0}^{2}}{8 \lambda^{2} \psi}+\frac{B^{2}}{r^{2}}+\theta_{0}(x) \tag{12}
\end{equation*}
$$

where A^{2} and B^{2} are constants and $\theta_{0}(x)$ is the solution of the four-dimensional Laplace equation considered by Jackiw et al (1977)

$$
\theta_{0}(x)=\sum_{i} \frac{\lambda_{i}^{2}}{\left|x-y_{i}\right|^{2}} .
$$

There remains now to compute the Pontryagin charge

$$
q=\frac{1}{16 \pi^{2}} \int \operatorname{Tr}^{*} F_{\mu \nu} F_{\mu \nu} \mathrm{d}_{4} x .
$$

The general expression for q for A_{μ} of the form (3) (or (5)) is

$$
\begin{align*}
e^{2} q=\frac{1}{16 \pi^{2}} \int & d_{4} x\left\{\left[-\square \ln \theta-\frac{1}{2} \square\left(\Lambda^{2}+\Omega^{2}\right)+\nabla\left(\left(\Lambda^{2}+\Omega^{2}\right) \nabla \ln \theta\right)\right]\right. \\
& +\left(\Lambda^{2}+\Omega^{2}\right)\left[-\square \ln \theta-\frac{3}{2}\left(\frac{\square \psi}{\psi}-\left(\frac{\nabla \psi}{\psi}\right)^{2}\right)+\frac{1}{2}\left(\nabla \ln \theta^{2} \psi^{3}\right)^{2}+\frac{1}{4}\left(\Lambda^{2}+\Omega^{2}\right)\right] \\
& \left.+\frac{3}{2}\left[\frac{\square \psi}{\psi}-2\left(\frac{\nabla \psi}{\psi}\right)^{2}\right]^{2}\right\} . \tag{13}
\end{align*}
$$

If now the equations of motion (6)-(9) are substituted all the terms in the integrand may be eliminated except the first and last leaving

$$
e^{2} q=\frac{1}{16 \pi^{2}} \int\left\{-\square \square \ln \theta+\frac{3}{2}\left[\frac{\square \psi}{\psi}-2\left(\frac{\nabla \psi}{\psi}\right)^{2}\right]^{2}\right\} \mathrm{d}_{4} x .
$$

Substituting from (11) for ψ and integrating we obtain

$$
\begin{equation*}
e^{2} q=1-\frac{1}{16 \pi^{2}} \int \square \ln \theta \mathrm{~d}_{4} x \tag{14}
\end{equation*}
$$

If $\Omega_{0}=0$ we obtain the usual $\mathrm{SO}(4)$ result. It is easily seen that the solution (12) when $\Omega_{0} \neq 0$ has charge equal to the number of terms taken in addition to the term $\Omega_{0}^{2} / 8 \lambda^{2} \psi$. In particular taking this last term alone gives a flat connection with zero charge. Taking

$$
\theta=A^{2}+\left(\Omega_{0}^{2} / 8 \lambda^{2} \psi\right)
$$

gives a unit charge solution which is already in a non-singular gauge. If we take the most general spherically symmetric solution

$$
\theta=A^{2}+\frac{\Omega_{0}^{2}}{8 \lambda^{2} \psi}+\frac{B^{2}}{r^{2}}
$$

with A^{2}, Ω_{0}, B^{2} all non-zero we get charge 2 .
It should be observed that putting $\Lambda=\Omega$ to satisfy (8) and (9) actually reduces the ansatz (3) to an SO(5) ansatz since the last two terms can be grouped as

$$
\left(1+\mathrm{i} \gamma_{5}\right) \gamma_{\mu} \Omega / 4 e
$$

and this together with $L_{\mu \nu}$ closes on an $\mathrm{SO}(5)$ algebra. Thus we have in fact found an $\mathrm{SO}(5)$ solution.

We thank Professor J T Lewis for helpful discussions, and Professor L S O'Raifeartaigh for numerous conversations on the topic.

References

Belavin A A, Polyakov A M, Schwartz A S and Tyupkin Yu S 1975 Phys. Lett. 59B 85 Jackiw R, Nohl C and Rebbi C 1977 Phys. Rev. D 151642
Tchrakian D H 1977 Lett. Math. Phys. to be published

[^0]: \dagger Permanent address: St. Partick's College, Maynooth, Co. Kildare, Ireland.

